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Aims
• Can we use a numerical tool to model 

overtopping?
• Wave by wave analysis with tides and surge
• Effect of beach profile
• EuroTop comparison
• Walcott and Blackpool case studies
• Input for flood inundation models
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Prediction of Wave Overtopping

Options
• Physical Models
• Empirical Tools
• Numerical Models?

Nonlinear Shallow Water Equations
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Wave Breaking

Shallow Water 
Equations

Where does 
breaking start?

What happens to 
breaking waves?

• Free surface level input (no paddle)
• Sponge layer at offshore boundary
• Incident Waves

Wave Input (Larsen and Dancy, 1983)

hu = 0

Sponge Layer Wave Input

Input elevation
Depends on group velocity
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Spectral Wave Input

Model Validation

• Solitary Waves
• Regular Waves
• Random Waves
• Wave Runup
• Wave Overtopping
• Field Data
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Model Validation – Wave Overtopping

Anchorsholme Seawall 
Blackpool

• Field data (HR 
Wallingford / EA)

• Physical model tests 
at HR Wallingford

Link to 
Movie

Model Validation – Wave Overtopping
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Model Validation – Wave Overtopping

FORCE

Model Validation – Wave Overtopping
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Wave Overtopping Volumes - Prototype Scale
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Model Validation – Wave Overtopping

Field Data
(from EA)

Without 
Wall Force

Force from 
Recurve Wall

Experimental 
Data

Walcott - Waves

Storm from 
November 
2007
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Walcott Seawall

Beach Profiles
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Wave Input
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• Random waves
• Eleven sets of random 

phases
• 200 waves per run

Overtopping and Beach Level
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Overtopping and Beach Level Link to 
Movie

2007 Storm – Modelled Conditions
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2007 Storm – Overtopping and Inundation
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8.02 m3/m throughout storm
Mean rate = 0.45 l/s/m over 5 hrs

2007 Storm – Overtopping Rates
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Hourly Mean Overtopping Rates - SWAB Model vs Neural Network Tool
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Joint Probability Analysis
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Overtopping, flooding and 
inundation
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multi-scale

highly nonlinear
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3m
In SPH, we know that overtopping 

is dependent on resolution, so 
with a much finer resolution this 
could well produce higher values

www.floodrisk.org.uk EPSRC Grant:  EP/FP202511/1

SPHysics

• Code has been released as free open-sourceware
http://www.sphysics.org (4000+ downloads)

An international 
collaboration  
between 4 
universities:

• The Johns Hopkins    
University (USA)
• Universidade de 
Vigo (Spain)
• University of 
Manchester (UK)
• University of 
Rome, La Sapienza
(Italy)
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Conclusions
• Can we use a numerical tool to model 

overtopping? YES
• Wave by wave analysis with tides and surge
• Effect of beach profile
• EuroTop comparison Same order of magnitude
• Walcott and Blackpool case studies Good results
• Input for flood inundation models
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